将棋AIで学ぶディープラーニング | マイナビブックス

将棋AIで学ぶディープラーニング

  • 著作者名:山岡忠夫
    • 書籍:3,498円
    • 電子版:3,498円
  • B5変型判:288ページ
  • ISBN:978-4-8399-6541-9
  • 発売日:2018年03月14日
  • mixiチェック
  • このエントリーをはてなブックマークに追加

内容紹介

人より強い"将棋プログラム"を作ろう

将棋プログラムの作成を通してディープラーニングをより深く理解できる。

2016年3月、プロ棋士に勝つには後10年かかると言われていたコンピュータ囲碁でDeepMindが開発したAlphaGoがトップ棋士に勝利しました。そのAlphaGoで使われた手法がディープラーニングです。

AlphaGoでは局面を「画像」として認識し打ち手の確率と局面の勝率を予測することで、次の打ち手を決めています。画像とは具体的にどのようなものか、次の打ち手をどうやって決めるのか?AlphaGoの論文をヒントに、ディープラーニングを使い棋譜を学習した将棋AIの開発を行います。強化学習のみでトップレベルの強さを持つAlphaZeroで用いられた手法についても取り入れています。

[導入編]では、コンピュータ将棋の歴史とディープラーニングの関係、コンピュータ将棋の大会の概要と参加方法について紹介します。
[理論編]では、実装する将棋AIの前提となる理論について解説します。従来のコンピュータ将棋のアルゴリズム、コンピュータ囲碁で用いられているモンテカルロ木探索とAlphaGoがどのようにディープラーニングを応用したか。基礎的な知識について解説しつつ、これらを将棋AIに応用する方法について述べます。
[実践編]では、ディープラーニングを使った、実際に対局できる以下の3つの将棋AIについて、PythonとChainerで実装していきます。

方策ネットワーク(policy network)を使って指し手の予測のみでプレイするAI。
価値ネットワーク(value network)を使って1手探索を行うAI。
方策ネットワークと価値ネットワークを使ってモンテカルロ木探索を行うAI。

最後に、より強い将棋AIを作りたいという方のために、ヒントとなる情報を紹介します。

電子版の購入は姉妹サイト「IT書籍ストア Manatee」がオススメ!
充実のラインナップに加え、割引セールも定期的に実施中!

商品を選択する

フォーマット 価格 備考
PDF 3,498 ※ご購入後、「マイページ」からファイルをダウンロードしてください。
※ご購入された電子書籍には、購入者情報、および暗号化したコードが埋め込まれております。
※購入者の個人的な利用目的以外での電子書籍の複製を禁じております。無断で複製・掲載および販売を行った場合、法律により罰せられる可能性もございますので、ご遠慮ください。
EPUB 3,498 ※ご購入後、「マイページ」からファイルをダウンロードしてください。
※当商品は縦組みリフロー型のEPUBです。縦組みEPUBの表示に完全対応していないリーダーでご閲覧いただいた場合、表示上の不具合が発生する可能性があります。
※ご購入された電子書籍には、購入者情報、および暗号化したコードが埋め込まれております。
※購入者の個人的な利用目的以外での電子書籍の複製を禁じております。無断で複製・掲載および販売を行った場合、法律により罰せられる可能性もございますので、ご遠慮ください。
※閲覧方法は「電子書籍フォーマットについて」をご参照ください。

電子書籍フォーマットについて

  

備考

山岡忠夫(やまおか・ただお)
東京工業大学工学部電子物理工学科卒業。システムエンジニア。趣味でスマートフォン向けアプリの開発を行っている。AlphaGoでディープラーニングに興味を持ち将棋ソフト「dlshogi」を開発中。開発状況は随時ブログに掲載中。
http://tadaoyamaoka.hatenablog.com/

目次

はじめに
本書の読み方

第Ⅰ部 導入編
第1章    コンピュータ将棋について
1.1    コンピュータ将棋の歴史
1.2    コンピュータ将棋とディープラーニング
1.3    コンピュータ将棋の大会

第II部 理論編
第2章    コンピュータ将棋のアルゴリズム
2.1    ゲーム木
2.2    ミニマックス法
2.3    評価関数
2.4    αβ法
2.5    評価関数の機械学習
2.6    強化学習
2.7    まとめ
第3章    コンピュータ囲碁のアルゴリズム
3.1    コンピュータ囲碁の課題
3.2    モンテカルロ法
3.3    モンテカルロ木探索
3.4    マルチアームドバンディット問題
3.5    UCTアルゴリズム
3.6    まとめ
第4章    AlphaGoの手法
4.1    方策ネットワーク(policy network)
4.2    価値ネットワーク(value network)
4.3    AlphaGoの探索アルゴリズム
4.4    AlphaGo Zeroの手法
4.5    AlphaZeroの登場
4.6    まとめ
第5章    ディープラーニングについて
5.1    ニューラルネットワーク
5.2    ニューラルネットワークの学習
5.3    分類問題と回帰問題
5.4    畳み込みニューラルネットワーク
5.5    ディープラーニングの将棋AIへの応用
5.6    まとめ

第III部 実践編
第6章    ディープラーニングフレームワーク
6.1    ディープラーニングフレームワークについて
6.2    フレームワークの選択
6.3    GPU
6.4    インストール
6.5    サンプル実行
6.6    Chainerの基本
第7章    方策ネットワーク(policy network)
7.1    ソースコードの構成
7.2    モジュールインストール
7.3    方策ネットワークの構成
7.4    方策ネットワークの実装
7.5    訓練データの準備
7.6    python-shogi
7.7    共通処理の実装
7.8    学習処理の実装
7.9    学習実行
第8章    将棋AIの実装
8.1    ソースコードの構成
8.2    USIエンジン
8.3    USIエンジンの実装
8.4    コマンドラインからテスト
8.5    GUIソフトに登録できるようにする
8.6    USIエンジンに登録
8.7    対局
8.8    ソフトマックス戦略
8.9    まとめ
第9章    学習テクニック
9.1    ハイパーパラメータの調整
9.2    最適化手法
9.3    Batch Normalization
第10章    価値ネットワーク(value network)
10.1    ソースコードの構成
10.2    価値ネットワークの構成
10.3    価値ネットワークの実装
10.4    学習処理の実装
10.5    学習実行
10.6    「1手」探索のAI作成
10.7    USIエンジンに登録
10.8    対局
10.9    まとめ
第11章    学習テクニック その2
11.1    転移学習
11.2    マルチタスク学習
11.3    Residual Network
第12章    モンテカルロ木探索
12.1    ソースコードの構成
12.2    ハッシュ
12.3    モンテカルロ木探索の実装
12.4    テスト
12.5    対局
12.6    並列化
12.7    まとめ
第13章    さらに発展させるために
13.1    C++による高速化
13.2    大規模学習
13.3    終盤の課題

参照文献

付録    Linuxでのインストール手順

最近チェックした商品

Vポイント利用手続き

         Vポイント利用手続きに関する同意事項

                                株式会社マイナビ出版

株式会社マイナビ出版が提供するマイナビBOOKSにおいてVポイントご利用続きをされる方は、以下に掲げるお客様の個人情報の取り扱いについてご確認の上、ご同意下さい。

マイナビBOOKSにおいてVポイントサービスをご利用いただいた場合に、当社から、次に掲げる<提供情報>を、<提供目的>のためにCCCMKホールディングス株式会社(以下、「MKHD」といいます)へ提供します。

  <提供目的>:MKHDの定める個人情報保護方針及びマイナビBOOKSにおけるT会員規約第4条に定める利用目的で利用するためVポイントサービスを利用するため
  <提供情報>:
   1)お客様が【マイナビBOOKS】の正当な利用者であるという情報
   2)ポイント数・利用日
   3)その他、Vポイントサービスを利用するにあたり必要な情報

  <提供方法>: 電磁的記録媒体の送付またはデータ通信による。ただし、提供するデータについては暗号化を施すものとする。

なお、MKHDに提供された、以下の情報の利用については、MKHDの定める個人情報保護方針及びT会員規約 に沿って取り扱われます。
上記の情報提供の停止をご希望される場合には、【マイナビBOOKS】におけるVポイント利用手続きの解除を実施していただく必要があります。
Vポイント利用手続きの解除、およびVポイントサービスにおける個人情報に関するお問い合わせ先は、以下のとおりです。
お客様お問い合わせ先:Tサイト(https://tsite.jp/contact/index.pl )

 なお、Vポイント利用手続きの解除が完了しますと、マイナビBOOKSにおけるVポイントサービスをご利用いただけなくなりますので、予めご了承ください。

Vポイント利用手続きを行いますか?