PyTorch自然言語処理プログラミング word2vec/LSTM/seq2seq/BERTで日本語テキスト解析!
インプレス
- 新納 浩幸(著者)
PyTorchで日本語テキスト解析をより容易に実装!
日本語テキスト解析処理を快速プログラミング!
単語/文書の分類、機械翻訳などを実装。
自然言語処理は、検索エンジン、自動要約、機械翻訳、音声認識などで利用される技術です。
PyTorchでは、特にTransformersというBERT系モデルを提供することで、
より簡単にBERTを利用できるようになっています。
本書では、自然言語処理で特に重要なディープラーニング技術である
word2vec、LSTM、seq2seq、そしてBERTを取り上げます。
まず第1章でPyTorchの基本を説明します。そのあと各技術の考え方を説明し、
PyTorchを使ったそれぞれのプログラミング手法を解説します。
それらのプログラミングでは、以下のことなどを目的にしています。
・単語や文書の類似度を測る
・文章内の単語の品詞を分類する
・日英の機械翻訳を実行する
・文書を分類する
・質問/回答タスクを実行する
【本書の構成】
第1章 PyTorchの基礎
第2章 word2vecによる分散表現 ~単語をベクトルで表現~
第3章 LSTMによる時系列データ解析 ~文を単語の系列として解析~
第4章 seq2seqモデルによる機械翻訳 ~ある系列を別の系列に変換~
第5章 事前学習済みモデルBERTの活用 ~タスクに応じてモデルを調整~
付録A プログラミング環境の構築(Windows)
付録B 本書で解説した主要プログラム集
※本書の内容はPython/PyTorch/機械学習の基本事項を
理解されていることを前提としています。
発売日:2021-03-18
ページ数:256ページ
目次
著者プロフィール
絶賛!発売中!
-
- 良いコードの道しるべ
- 予約 3146円
-
- 森 篤史(著者)
- その他言語
-
- 予約受付中
-
- 安全な暗号をどう実装するか
- 予約 4400円
-
- Jean-Philippe Aumasson(著者)、 Smoky(翻訳)、 IPUSIRON(監訳)、 藤田亮(監訳)
- ネットワーク
-
- 予約受付中
-
- 実践で学ぶコード改善の極意
- 予約 4235円
-
- Christian Clausen(著)(著者)、 松田晃一(翻訳)
- その他言語
-
- 予約受付中