
1.1＿シンボルとインスタンス
1.2＿インスタンス名と識別子

1.3＿簡単なスクリプトの記述と動作確認
1.4＿ムービークリップのプロパティとターゲットパス

1.5＿変数はメモリ
Column 01＿ECMAとECMAScript

Chapter 1
ActionScript 3.0を使ってみよう

010 ActionScript 3.0 Professional Guide

Flashでは、ステージ上にさまざまな素材を配置して、ムービーを作成します。［ツール］パネルのツ
ールを使って作成するシェイプ（Shape）やテキストフィールド（TextField）、外部画像を読込んだビッ
トマップ（Bitmap）、それらを用いて作成するシンボルなど、Flashムービーで使われる目に見える素材
を「 ビジュアルエレメント」と呼びます。それらビジュアルエレメントの中で、ActionScriptにかぎらず、
Flashで重要な役割を果たすのが「シンボル」です。まずは、ムービークリップシンボルを、ひとつつく
ってみましょう。

なお、新規Flashムービー（FLA）ファイルを作成する際には、［新規ドキュメント］ダイアログボック
スで必ず［Flashファイル（AS 3.0）］を選んでください（図01-001）。この選択により、新規ファイル
の［パブリッシュ設定］は、［ActionScriptのバージョン］が［ActionScript 3.0］に設定されます。

1.1 シンボルとインスタンス

図01-001■［新規ドキュメント］ダイアログボックスで［Flashファイル（AS 3.0）］を選ぶ
［パブリッシュ設定］の［ActionScriptのバージョン］が［ActionScript 3.0］に設定され、ActionScript 3.0が使用可能になる。

1.1.1　シンボルの作成

ステージ上に、何かビジュアルエレメント、たとえば矩形や楕円のシェイプを描画・配置します。そのビジュ
アルエレメントを［選択ツール］で選び、右クリックして［ シンボルに変換］を選ぶか、ショートカットキー［F8］
を押します。［シンボルに変換］のダイアログボックスが開いたら、［タイプ］は［ ムービークリップ］を選びま
す（図01-002）。シンボルの［名前］は、自分で管理しやすい名前をつけます。シンボル名は、入力が必須
です。けれど、スクリプトのコントロール対象にはなりません。

図01-002■ビジュアルエレメントを［シンボルに変換］してムービークリップにする
［タイプ］は［ムービークリップ］を選び、任意の［名前］を入力する。

0111.1 シンボルとインスタンス

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

1.1.2　シンボルは役者でインスタンスは配役

作成したシンボルは、［ライブラリ］パネルに格納されます（図01-003）。シンボルがステージに配置され
ると、それは「シンボルのインスタンス」あるいは単に「インスタンス」と呼ばれます。シンボルと、そのイン
スタンスとの区別は重要です。ステージを「舞台」と考えれば、シンボルは「役者」に当たります。［ライブラリ］
は、いわば役者の控え室です。役者は舞台のうえでは、「配役」を与えられます。この配役・キャストがイン
スタンスになるのです。

図01-003■シンボルとシンボルのインスタンス
シンボルからインスタンスをいくつつくっても、グラフィックなどのおもなデータはシンボルひとつ分で済む。

Tips 01-001 ■スクリプトの操作対象にならない名前
スクリプトはSWFにパブリッシュされて、Flash Player上で動作します。しかし、シンボルの［名前］は、SWF
に書出しされません。したがって、スクリプトでコントロールする対象にはならないのです。ほかには、レイヤー
名もSWFには書出されず、スクリプトで操作することはできません。
その代わり、名前のつけ方は自由で、漢字などの全角やスペースも使えます。スクリプトで操作するための名前（後
掲Word01-001「識別子」参照）のような命名の決まりはとくにありません。

012 ActionScript 3.0 Professional Guide

「ステージ」は舞台で「シンボル」が役者、「インスタンス」はキャストになる。

ひとつのシンボルから、インスタンスはいくつでもつくれます。同じフレームに複数同時に配置することもで
きますし、別のフレームで何度でも使い回すことが可能です。そのとき、もっともデータサイズを費やすグラ
フィックデータは、シンボルひとつ分しか要しません。ですから、同じシンボルを再利用すれば、データサイ
ズの節約になるのです。いってみれば、ひとりの役者に何役演じてもらっても、ギャラはひとり分で済むような
ものです。

1.1.3　シンボルとインスタンスのタイプ

シンボルには、［ムービークリップ］と［ボタン］、それに［グラフィック］の3つの［タイプ］があります（図
01-004）。それぞれのタイプによって、ステージ上のアニメーションの動作や、ActionScriptにおける扱いが
異なります。 シンボルの［タイプ］を確認・変更するには、［ライブラリ］パネルでシンボルを選んで、右クリ
ックしてコンテキストメニュー、または［ライブラリ］パネルのオプションポップアップメニューから［プロパティ］
を選択するか、もしくは （プロパティ）ボタンをクリックして、［ シンボルプロパティ］ダイアログボックスを
開きます。

図01-004■シンボルの3つのタイプ
［ライブラリ］パネルでシンボルを選んで、右クリックしてコンテキストメニュー、ま
たはパネルのオプションメニューから［プロパティ］を選択。あるいは、［ライブラリ］
パネル下部の （プロパティ）ボタンをクリックする。

0131.1 シンボルとインスタンス

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

［ムービークリップ］や［ボタン］シンボルのインスタンスは、スクリプトでコントロールすることが可能です。
それに対して、［グラフィック］シンボルのインスタンスは、ActionScriptで操作できません。役者というより、
大道具・小道具あるいは衣装のような扱いです。［グラフィック］インスタンスをスクリプトでコントロールした
いときは、通常［ムービークリップ］シンボルの中に入れ子にして、その［ムービークリップ］ごと操作します。
［ライブラリ］から［ムービークリップ］シンボルをステージにドラッグ&ドロップすれば、［ムービークリップ］

インスタンスが配置されます。同様に、［ボタン］シンボルをドラッグ&ドロップすると、［ボタン］インスタンス
ができあがります。しかし、これらインスタンスの［タイプ］は、［プロパティ］インスペクタで変更することが
可能です（図01-005）。シンボルの［タイプ］が何であっても、Flashムービー上のふるまいはインスタンスの［タ
イプ］によって決まります。

図01-005■インスタンスの［タイプ］は［プロパティ］インスペクタで変更可能
シンボルの［タイプ］にかかわらず、ムービー上のふるまいはインスタンスの［タイプ］で決まる。

シンボルの［タイプ］は、役者の性別のようなものでしょう。普通、男優は男役をやり、女優は女役を演
じます。けれども、そうでない舞台はあります。宝塚では女性が男役をやり、歌舞伎の女形は男性です。そし
て、舞台上の物語は、あくまで配役の設定を前提として展開するのです。

014 ActionScript 3.0 Professional Guide

1.2.1　識別子とは

インスタンスには、「 識別子」（しきべつし）と呼ばれる以下のWord 01-001のような決まりで名前をつけな
ければなりません。識別子といういかめしい用語は、英語ではidentifi erといいます。identifi erは、語源が「ID」
と同じで、自分が何者であるかを示すものという意味です。それは要するに「名前」で、プログラムでコントロ
ールするための名前が「識別子」なのです。したがって、識別子はインスタンス名だけでなく、後で述べる変
数や関数（function）、その他ActionScriptで制御するすべての名前に用いられます。

識別子は第1に、半角の英数字を用います。他に記号としては、半角の「_」（アンダースコア）が使えます。
もうひとつだけ「$」（ドル記号）も使用可能ですが、通常使われませんし、その必要性も少ないでしょう。「-」

（マイナス）などの記号やスペースも使えませんので注意しましょう。

スクリプト（script）には、英語で「脚本」という意味があります。脚本は、役者に対して書くもので
はありません。キャスト（配役）のセリフや演技を指示するものです。ActionScriptも、原則としてイ
ンスタンスをコントロールするものです。キャストに指示するには、役名が必要です。たとえそれが単な
る通行人であったとしても、「通行人 A」という名前がなければセリフも演技も指示できません。同じよ
うに、インスタンスには「インスタンス名」を設定する必要があります。

インスタンス名と識別子1.2

Word 01-001 ■識別子
プログラムでコントロールするインスタンスや変数、関数などに対してつける名前です。以下の4つの決まりがあり
ます。

 1. すべて半角で、英数字か「 _」（ アンダースコア）または「 $」（ ドル記号）のみを用います。ただし、「$」は通
常は使われません。

 2. 識別子の最初の文字に、数字を使うことはできません。
 3. 英字の大文字小文字は区別されます。
 4. ActionScriptで現在使用され、あるいは将来使われる可能性のあるキーワードとして定められている予約語

を使うことはできません。

Maniac! 01-001 ■識別子への「$」の使用
ActionScriptが準拠する ECMAScript（後述Column 01「ECMAとECMAScript」参照）の仕様には、「ドル
記号はもっぱら機械的に生成されるコード中で使用されることを目的とする」 （"The dollar sign is intended for
use only in mechanically generated code."）とあります（ECMA-262第3版「7.6 Identifi ers」）。つまり、プ
ログラムの内部処理で使われるものなので、ユーザーが「$」を使用することは必ずしも意図されていないと考え
られます。

0151.2 インスタンス名と識別子

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

「識別子」?!難しそうに響くけど、要はプログラムで使われる「名前」。

第2に、識別子の最初の文字には、数字が使えません。ですから、たとえば「1-001 Start」というインス
タンス名は、3つ問題があります。（1）最初に数字「1」が使われており、（2）「-」（マイナス）や（3）「 」（半
角スペース）という識別子に使えない文字が含まれているからです。この場合、たとえば「no1_001_Start」
という名前に変更すればよいでしょう。

第3に、識別子に用いた英字の大文字小文字は区別されます。たとえば、ムービークリップシンボルのイン
スタンスに「my_mc」（すべて小文字）と名前をつけておいて、スクリプトから「My_mc」（頭が大文字）や「MY_
MC」（すべて大文字）を制御しようとしても、これらの識別子はすべて別物として認識されるため、正しくコ
ントロールすることができません。大文字小文字の違いも含めて、識別子は正確に設定・記述する必要があ
ります。

第4に、ActionScriptですでに使われているキーワードは、識別子として使用することができません。たと
えば、「if」という名前をインスタンスにつけようとすると、それは予約されている旨の警告ダイアログが表示さ
れて、設定できません（図01-006）。このようなキーワードを「予約語」と呼びます（後述Tips 02-009「キ
ーワードと予約語」参照）。

AS1&2 Note 01-001 ■大文字小文字の区別
ActionScript 1.0/2.0 の場合、Flash Player 7以降で書出すと、識別子の大文字小文字が区別されます。Flash
Player 6以前の書出しでは、大文字小文字の違いは認識されません。もっとも、大文字小文字を正確に区別しな
い識別子が使われたスクリプトは、大変読みにくいものになります。したがって、Flash Player 6以前であっても、
大文字小文字は区別して書くことをお勧めします。

016 ActionScript 3.0 Professional Guide

図01-006■インスタンス名に予約語を入力したときの
警告ダイアログ
予約語であっても警告ダイアログが表示されないもの
もある。

予約語には、ActionScriptで現在使用されていなくても、将来使われる可能性があるキーワードも含まれま
す。また、ActionScriptに定義されているすべてのプロパティや命令（関数・メソッド）の名前が、予約語に
なっている訳ではありません。ActionScript定義済みの名前であっても、スクリプトで使用して問題なく動作
するものもあります。とはいえ、ActionScriptに定義済みの名前は、基本的に使うのは避けた方が無難でしょ
う。予約語については、また次Chapter2.2「変数を使う」で、もう少し詳しく説明します。

1.2.2　インスタンス名の設定

インスタンス名を設定するには、まず［選択ツール］で対象となるMovieClipインスタンスをクリックし、［プ
ロパティ］インスペクタの［インスタンス名］のテキストボックスに識別子を入力します（図01-007）。ここでは、
メインタイムラインに配置したムービークリップシンボルのインスタンスに、たとえば「my_mc」というインス
タンス名を設定しておきましょう。なお、メインタイムラインは、新規のムービーにデフォルトで［シーン 1］と
表示されるタイムラインです。

図01-007■［プロパティ］インスペクタでインスタンス名を設定
［インスタンス名］のテキストボックスに識別子を入力する。

Tips 01-002 ■タイムラインとシーン
Flashでは、［シーン 1］と書かれたメインのタイムラインにムービークリップインスタンスを配置し、さらにそのシ
ンボル内に別のムービークリップを幾重にも入れ子にすることができます。ムービークリップもまた独自のタイム
ラインをもちますので、Flash（SWF）ムービーはタイムラインの階層構造になっているということができます。メ
インタイムラインは、その階層の最上位にあります。
シーンは、［シーン］パネルを使って名前を変えたり、別のシーンを追加してそれらの再生順序を入替えることも
可能です。ただし、［パブリッシュ］すると、すべてのシーンがその再生順序にしたがってつなげられ、1本のメイ
ンタイムラインとして書出されます。

0171.3 簡単なスクリプトの記述と動作確認

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

1.3.1　フレームアクション

スクリプトを示すとき、どのタイムラインのどのフレームに記述するのかという情報は重要です。どのタイム
ラインかというのは、メインタイムラインなのかムービークリップなのか、そしてムービークリップの場合にはど
のインスタンスなのかを特定する必要があるということです。どのフレームかというのは、キーフレームのフレ
ーム番号の情報です。

キーフレームに記述したスクリプトを、「 フレームアクション」と呼びます。ですから、たとえば「メインタイ
ムラインの第1フレームアクション」とか、「ムービークリップインスタンスmy_mcの第10フレームアクション」
と表現すれば、記述場所が明らかになります。

キーフレームでさえあれば、スクリプトはどこにでも記述できます。ただ、あちこち無頓着にスクリプトを書
くと、後でわからなくなります。そこで、スクリプトのための専用レイヤーを用意した方がよいでしょう（図
01-008）。その際、せっかくつくった専用レイヤーにうっかりビジュアルエレメントを置いてしまわないように、
レイヤーはロックしておくと安心です。レイヤーはロックしてあっても、スクリプトを記述することは可能です。

図01-008■スクリプト専用レイヤーを作成
スクリプト専用レイヤーは、ロックしておくと安心だ。

スクリプトは、タイムラインのキーフレームに記述します。タイムラインというのは、メインタイムライ
ンだけではありません。ムービークリップシンボル内のタイムラインも含みます。ですから、スクリプト
の記述場所は、メインタイムライン以外に、ムービークリップインスタンスの数だけ存在します。今回は、
ムービークリップインスタンスを配置したメインタイムラインにスクリプトを書くことにします。

AS1&2 Note 01-002 ■スクリプトの記述場所
ActionScript 1.0/2.0ではキーフレームの他に、ムービークリップやボタンのインスタンスを選択して、インスタン
スにスクリプトを記述することができます。ActionScript 3.0では、FLAムービー内のスクリプトは、キーフレー
ムにしか書けません。

1.3 簡単なスクリプトの記述と動作確認

Tips 01-003 ■専用レイヤーの作成
スクリプトやフレームラベル、サウンドなど、ステージ上に表示されないエレメントや素材は、専用レイヤーを作
成して、それぞれ別個に管理することをお勧めします。

018 ActionScript 3.0 Professional Guide

1.3.2　プロパティの設定

Flashアプリケーションを使って、ムービーを作成する作業は「 オーサリング」と呼ばれます。オーサリング
時に、ムービークリップシンボルのインスタンスに数値で座標を指定するには、［プロパティ］インスペクタか［情
報］パネルのxまたはy座標のテキストボックスに値を入力します（図01-009）。

図01-009■［プロパティ］インスペクタで座標値を設定
xy座標のテキストボックスに値を入力する。

この操作をスクリプトで処理するには、ムービークリップインスタンスのプロパティに数値を設定します。
まず、メインタイムラインに作成したスクリプト専用レイヤーのキーフレームを選択します。現在はフレーム

はひとつのみで、第1フレームはつねにキーフレームです。ですから、とくにキーフレームを作成する操作は要
りません。つぎに、［ウィンドウ］メニューから［アクション］を選択して、［アクション］パネルを表示します。

スクリプトを書く前には、必ず記述場所が正しく選ばれていることを確認しましょう。書き場所を間違うと、
エラーが発生したり、スクリプトが意図した動作をしなくなります。今回は、メインタイムラインのスクリプト
専用レイヤー第1フレームを選択しておきます。そして、キーボードでスクリプト01-001のとおり1行の命令
文を入力します。スクリプトを設定したキーフレームには、小さいa記号が表示されます（図01-010）。

スクリプト01-001■メインタイムラインのスクリプト専用レイヤーのキーフレームに記述するスクリプト
my_mc. x = 100;

Tips 01-004 ■［アクション］パネル表示のショートカット
［アクション］パネルの表示はよく使う操作ですので、ショートカットを覚えると便利です。
ショートカットキーはWindowsが［F9］、Macintoshは［option］+［F9］です。キーフレームを右クリック（右
クリックの使えないMacintoshでは［control］+クリック）しても、［アクション］が選択できます。さらに、
Windowsは［Alt］、Macintoshは［option］キーを押しながらキーフレームをダブルクリックしても、［アクション］
パネルが開きます。
Mac OS Xでは［F9］がExposéのショートカットで使われているため、［アクション］パネルのショートカットは

［option］+［F9］に設定されています。Mac OS Xの［システム環境設定］から［キーボードとマウス］を選択す
れば、［キーボードショートカット］でExposéのショートカットは変更できます。
また、Flashアプリケーションの側は、Windowsは［編集］メニュー、Macintochは［Flash］アプリケーション
メニューの［キーボードショートカット］で、［アクション］パネルその他のショートカットが変えられます。

0191.3 簡単なスクリプトの記述と動作確認

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

スクリプトは、半角で入力します。「=」記号の前後の半角スペースは、あってもなくても問題はありません。
半角スペースは、いくつ挿入しても、スクリプト内では無視されるからです。ただし、全角スペースは、スクリ
プトには使えません。テキストとして扱う場合以外に全角文字を用いれば、シンタックス（文法）エラー（後
述Word 01-002「シンタックス」参照）になります。半角と全角のスペースは、一見してすぐに区別がつきに
くいので、間違えて入力しないように注意しましょう。

図01-010■キーフレームにステートメントを記述
スクリプトを記述したキーフレームにはa記号が表示される。

命令文を「ステートメント」と呼びます。スクリプト01-001のステートメントは、スクリプトを書いたメイン
タイムラインに配置されているムービークリップインスタンスmy_mcの、水平座標のプロパティ xに数値100
を設定します。

my_mc.xの「x」は、ムービークリップインスタンスのx座標をコントロールするプロパティです。インスタン
ス名my_mcに続く「.」（ドット）は、インスタンスmy_mcがドットの後に指定するプロパティxの操作対象（タ
ーゲット）であることを示します。つまり、「my_mc.x」は、ムービークリップインスタンスmy_mcのxプロパ
ティをコントロールするという意味です。
「=」記号は、右辺の値を左辺のプロパティに設定する処理です。この処理をプログラミングでは、「代入」

と呼びます。行の最後の「;」（セミコロン）は、ひとつのステートメントの終了を意味します。

スクリプト専用レイヤー

my_mc

Tips 01-005 ■不可視文字の表示
［アクション］パネルのオプションメニューで［隠し文字］をオンに設定すると、全角と半角のスペースや改行コー
ドが識別できるように表示されます（図01-011）。

図01-011■［アクション］パネルの［隠し文字］をオンに設定
全角スペースや半角スペース、改行などが異なった記号で表示される。

全角スペース
半角スペース

改行

020 ActionScript 3.0 Professional Guide

	 【プロパティへの値の代入】
 操作対象インスタンス.プロパティ = 値;

スクリプト01-001の1行のステートメントは、オーサリング時に［プロパティ］インスペクタでインスタンス
my_mcを選んで、x座標のテキストボックスに100を入力した処理に相当します。

Tips 01-006 ■基準点と変形点
厳密には、スクリプトによる座標の操作は、基準点（＋印）を対象とします（図01-012）。それに対して、オーサ
リング時の座標は、［情報］パネルの座標グリッドの設定により、変形点（○印）かシンボルの基準点のいずれ
かが原点になります。

図01-012■MovieClipインスタンスの基準点と変形点
変形点はデフォルトでインスタンスの中央に設定される。

変形点は、デフォルトでインスタンスの中心に設定されます。変形点を後から基準点の位置に設定するには、［自
由変形ツール］で変形点をダブルクリックします。

基準点

変形点

AS1&2Note 01-003 ■プロパティ名先頭のアンダースコア（_）
ActionScript 3.0のプロパティには、名前の先頭にアンダースコア「_」がつきません。ですから、ActionScript
1.0/2.0の_rootやムービークリップインスタンスの_xプロパティは、それぞれrootおよびxに変わります。
また一部には、アンダースコア（「_」）を取去るだけではなく、名称が新たになったプロパティもあります。ムービ
ークリップの_xmouseや_xscaleプロパティがそれで、それぞれmouseXとscaleXプロパティに名前が変わりま
す（表01-001）。

表01-001　ActionScript 1.0/2.0からActionScript 3.0へのプロパティ名変更の例

変更方法 ActionScript 1.0/2.0 ActionScript 3.0

「_」削除 _root、_alpha、_height、_parent、
_rotation、_visible、_width、_x、_y

root、alpha、height、parent、rotation、visible、
width、x、y

名称変更 _xmouse、_xscale、_ymouse、
_yscale

mouseX、scaleX、mouseY、scaleY

さらに、プロパティの取りうる値についても、注意が必要です。ActionScript 3.0では、2.0/1.0でパーセンテー
ジを単位とする多くのプロパティが、小数値を取るよう改められました。上記表01-001では、alphaやscaleX/
scaleYプロパティは値が、従来のパーセンテージの100%を1.0とする小数値に変更されました。

0211.3 簡単なスクリプトの記述と動作確認

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

1.3.3　スクリプトの動作確認

スクリプトはオーサリング環境でなく、SWFに書出されて、Flash Player上で動作します。Flashアプリー
ションから動作を確認する方法は、ふたつあります。

もっとも簡単な動作確認の方法は、［制御］メニューから［ムービープレビュー］を実行することです。ショ
ートカットキーは、Windowsが［Ctrl］+［Enter］、Macintoshは［command］+［return］です。すると、
FlashはSWFを書出したうえで、それをFlashアプリケーションに同梱されているFlash Playerで再生します

（図01-013）。［ムービープレビュー］では、ブラウザを開きません。

図01-013■［ムービープレビュー］で表示したSWF
ブラウザを起動せずFlashアプリケーション内のFlash Playerで再生する。

もうひとつの動作確認方法は、［ファイル］メニューから［パブリッシュプレビュー］の［デフォルト － （HTML）］
（ショートカットはWindowsが［Ctrl］+［F12］、Macintoshは［command］+［F12］）を選択することです。
FlashアプリケーションはSWFとHTMLファイルを書出して、SWFの埋込まれたHTMLをブラウザで開きま
す。

ただ、ローカルでの動作確認は、あくまで簡易な方法です。サイトで閲覧するコンテンツは、最終的には必
ずサーバーにアップロードして確認しましょう。SWFを再生する必要はなく、SWFとHTMLファイルを書出す
だけでよい場合には、［ファイル］メニューから［パブリッシュ］を行っても結構です。

1.3.4　プレビューの前に［シンタックスチェック］

実際にムービーをつくり込んでフレーム数が増え、スクリプトの記述されたキーフレームも数多くなってくる
と、エラーが発生した場合どのフレームのスクリプトに問題があるのかすぐに見つけにくくなります。とくに、
初心者にはエラーの発見は難しいものです。ですから、SWFを書出す前に、必ずスクリプトのチェックをする
ようお勧めします。

Tips 01-007 ■ローカルとサーバーの動作の違い
サーバーでは、ローカルと比べてSWFや外部ファイルを読込むのに時間がかかります。ロード待ちが必要な処理
は、ローカルとサーバーとでは、動作結果が異なることは少なくありません。また、ファイル名の大文字小文字
の違いは、ローカルでは認識されないものの、通常サーバーでは区別されます。さらに、 Flash Playerのセキュリ
ティによる制限は、ローカルとサーバーとで仕様が違います。

022 ActionScript 3.0 Professional Guide

スクリプトは、［アクション］パネルの［シンタックスチェック］ボタンで文法チェックが行えます（図
01-014）。ショートカットキーは、Windowsが［Ctrl］+T、Macintoshは［command］+Tです。

図01-014■［アクション］パネルの［シンタックスチェック］ボタンで構文チェック
ショートカットキーは［Ctrl］+T（Windows）または［command］+T（Macintosh）。

［ムービープレビュー］や［パブリッシュプレビュー］を行う前に［シンタックスチェック］をしておくと、エラ
ーが生じたときにも、その記述中のフレームアクションが問題だとすぐに特定できます。スクリプトのエラーも、
人間の病気と同じく早期発見・早期治療が大切です。

スクリプトのエラーも早期発見・早期治療が大切だ。

［シンタックスチェック］は、あくまで構文・文法上のテストを行うだけです。たとえば、ステートメント終了
の記号「;」（セミコロン）を間違えて、「:」（コロン）を入力した場合、［シンタックスチェック］でエラーが表
示されます。しかし、ムービークリップインスタンスのプロパティ「y」を誤って「z」と記入しても、「z」という
名前のプロパティはないにもかかわらず、エラーにはなりません。

Word 01-002 ■ シンタックス
英語のsyntaxは、構文あるいは文法を意味します。プログラミング言語の文法や記述の規則を、シンタックスと
いいます。文法や規則にしたがわないために発生するエラーが、シンタックスエラーです。

0231.4 ムービークリップのプロパティとターゲットパス

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

つぎは、メインタイムラインに複数のムービークリップインスタンスを置いて、コントロールしてみます。
車のボディのムービークリップシンボルCarと、タイヤのムービークリップシンボルTireを作成しました。

1.4.1　タイムラインに直接配置したインスタンスをコントロール

Carのインスタンスcar_mcをひとつと、Tireのインスタンスをふたつ、tire0_mcとtire1_mcというインスタ
ンス名にして、メインタイムラインに配置しました（図01-015）。

図01-015■メインタイムラインに3つのムービークリップインスタンスを配置
ムービークリップシンボルCarのインスタンスにはcar_mc、Tireのふたつのインスタンスにはtire0_mcとtire1_mcというインスタンス名を
設定する。

メインタイムラインの第1フレームアクションで、これらのインスタンスをスクリプトにより操作します。ムー
ビークリップインスタンスcar_mcを100ピクセル右に移動し、インスタンスtire0_mcを90度回転してみまし
ょう（tire1_mcはひとまずおきます）。水平座標のプロパティはxでした。回転角は rotationプロパティで設定
できます。そして、プロパティのコントロールには、ターゲット（操作対象）となるインスタンスの指定が必要
でした。すると、メインタイムラインの第1フレームアクションは、つぎのようになります（スクリプト01-002
および図01-016）。

スクリプト01-002■メインタイムラインの第1フレームアクション
car_mc.x += 100;

tire0_mc.rotation += 90;

1.4 ムービークリップのプロパティと ターゲットパス

car_mc

tire1_mc tire0_mc

024 ActionScript 3.0 Professional Guide

図01-016■メインタイムラインの第1フレームにスクリプトを記述
+=は、現在値に値を加算する演算子。

+=は、左辺の現在値に右辺の値を加算する演算記号（演算子）で、「加算後代入演算子」と呼びます。し
たがって、ムービークリップインスタンスcar_mcは右に100ピクセル移動し、インスタンスtire0_mcは時計
方向に90度回転します。ただし、3つのムービークリプインスタンスはメインタイムラインにバラバラに（独立
して）置かれていますので、ボディのインスタンスcar_mcが水平移動しても、タイヤのtire0_mcおよび
tier1_mcはその場を動きません（図01-017）。

図01-017■水平移動したボディにタイヤは置去り
car_mcは水平移動し、tire0_mcはその場で回転する。

car_mc

tire0_mc

car_mc

tire0_mc

Word 01-003 ■演算子
プログラミングで使われる演算記号のことを、「演算子」（operator）と呼びます。四則演算の+、-、*、/や代入
の=などが代表的です。しかし、それだけでなく、たとえば数学の演算記号にはない%（剰余）や、見た目は英
単語であっても演算子に分類されるtypeofなど、さまざまなものがあります。

0251.4 ムービークリップのプロパティとターゲットパス

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

1.4.2　ムービークリップシンボル内に入れ子にしたインスタンスをコントロール

ボディとタイヤを一緒に動かすには、タイヤの方にも水平移動のステートメントを加えるのも一法でしょう。
けれど、Flashには、シンボルを入れ子にできるという便利な機能があります。車のムービークリップシンボル
Carの中にタイヤのインスタンスtire0_mcとtire1_mcを入れ子にしてしまえば、インスタンスcar_mcと一緒に
ふたつのタイヤも移動します（図01-018）。

図01-018■ボディのムービークリップシンボル内にタイヤのインスタンスを配置
ムービークリップシンボルCarを編集して、その中にムービークリップインスタンスtire0_mcとtire1_mcを置く。

しかし、もとのスクリプト01-002のままでは、車のボディ（car_mc）とタイヤ（tire0_mcとtire1_mc）は
一緒に水平移動するものの、タイヤ（tire0_mc）が回転しなくなります。そして、つぎのようなエラーメッセー
ジが［出力］されます。

Tips 01-008 ■代入の演算子
加算後代入演算子+=を使ったステートメントは、通常の代入の演算子=を用いた記述に書替えることができま
す。つぎのふたつのステートメントは、どちらもプロパティ xの値に10加算する処理になります。

 x += 10

 x = x + 10

数学好きな人は、後者が方程式のように見えて、違和感を覚えるかもしれません。右辺のxはプロパティの現在
値で、左辺は新しい値になりますので、両辺の変数が同じ値を意味する方程式とは異なります。そういう人は、
数列の式を想い起こすとよいでしょう。

 xn = xn-1 + 10

現在の値に算術演算を施して、新しい値として代入する演算子はまとめて「算術複合代入演算子」と呼ばれます。
加算の+=のほか、減算-=や乗算*=、除算/=、剰余%=などがあります。

シンボルの編集

tire1_mc tire0_mc

026 ActionScript 3.0 Professional Guide

 1120: 未定義のプロパティ tire0_mc へのアクセスです。

これは、インスタンスtire0_mcがcar_mcのシンボル内に移動したため、rotationプロパティのターゲット
指定が正しくなくなったからです。ちょうどHTMLドキュメントにハイパーリンク（<a>タグのhref属性）を設
定した後、リンク先のファイルを別のフォルダに移動した状態に似ています。いわば「リンク切れ」が起こって
しまったのです。

ムービークリップインスタンスcar_mcの中に配置したインスタンスtire0_mcを指定するターゲットは、car_
mc.tire0_mcと記述します。したがって、スクリプト01-002をつぎのように書替えれば、car_mcと一緒に挿
入・移動したtire0_mcが回転します（スクリプト01-003）。

スクリプト01-003■ターゲットを修正したメインタイムラインの第1フレームアクション
car_mc.x += 100;

car_mc.tire0_mc.rotation += 90;

入れ子になったムービークリップインスタンスをターゲット指定するには、親のタイムラインからその子へと、
インスタンス名を順にドット（.）で結んで記述します。これはHTMLでURLを指定するときに、フォルダ（ディ
レクトリ）の階層を順にスラッシュ（/）で結ぶ、パスの指定と同じ考え方です。ターゲットのインスタンスも
ドット（.）区切りのパスで記述するので、「ターゲットパス」の指定と呼ばれることもあります。パスの起点は、
スクリプトを記述しているタイムラインです。

Tips 01-009 ■インスタンスは親のプロパティ
スクリプトを記述しているタイムラインに配置したインスタンスmy_mcの水平座標は、プロパティ xのターゲット
を指定して、my_mc.xでコントロールします。プロパティ（property）には「所有物」という意味があります。で
すから、プロパティ xは、ムービークリップインスタンスmy_mcの持ち物なのです。
他方、my_mcのシンボル内に配置した子のインスタンスchild_mcのターゲットパスは、my_mc.child_mcで指
定します。これは見方を変えると、インスタンスchild_mcがmy_mcの持ち物すなわちプロパティであることを示
しています。つまり、タイムラインに配置された子のインスタンスは、ActionScriptでは親のタイムラインのプロ
パティとして扱われるのです。
したがって、スクリプト01-003の2行目のステートメントは、インスタンスcar_mcのプロパティのtire0_mcのx
プロパティに、値90を加算するという意味になります。ところで、car_mcの前には、ターゲットの指定がありま
せん。この場合、スクリプトを書いているタイムラインが、自動的にターゲットとして認識されます。スクリプト
01-003はメインタイムラインに記述していますので、インスタンスcar_mcはメインタイムラインのプロパティだと
いうことになります。

0271.5 変数はメモリ

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

スクリプトを使った、ごく簡単なアニメーションを作成してみましょう。ActionScript 3.0のスタン
ダードなアニメーションのスクリプティングは、つぎのChapter2「スクリプトによるアニメーション」で
解説します。ここでは、Flash 4から使われている、タイムラインを用いた手法で実現します。

1.5.1　タイムラインを使ったアニメーション

ムービークリップインスタンスが配置されたレイヤーを、12フレームに拡げてみます。そのためには、第12
フレームを選択して、［フレームを挿入］（ショートカット［F5］）します（図01-019）。

図01-019■ムービークリップインスタンスのあるレイヤーを12フレームに拡げる
ムービークリップが配置されたレイヤーの第12フレームで、右クリック（右クリックの使えないMacintoshでは［control］+クリック）で［フ
レームを挿入］もしくはショートカット［F5］。

［ムービープレビュー］（ショートカットWindows［Ctrl］+［Enter］/Macintosh［command］+［return］）
すると、フレームレートがデフォルトのまま12fpsであれば、1秒ごとに車のcar_mcは100ピクセルずつ右に
移動し、前輪のtire0_mcは90度ずつ回転します。

フレームアクションは、そのフレームを描画する直前に実行されます。Flash Playerは、SWFのメインタイ
ムラインの12フレームを再生し終えると、デフォルトでは再生ヘッドをまた第1フレームに戻します。第1フレ
ームアクションは、再生ヘッドが第1フレームに入るたびに実行されます。したがって、フレームレートが
12fpsであれば、1秒間隔で第1フレームアクションが処理されて、アニメーションが行われることになります。

1.5 変数はメモリ

028 ActionScript 3.0 Professional Guide

スクリプトが1秒に1回の実行では、1fpsのフレームアニメーションと同じで、動きが滑らかになりません。
連続するフレームの長さを、縮めることにします。ただし、1フレームではスクリプトが繰返し処理されません（前
述Tips 01-010参照）。そこで、フレームの長さは2フレームとします。フレームレート12fpsに対して2フレ
ームごとにスクリプトを実行すれば、6fpsに相当するアニメーションになります。

スクリプト01-003における車のインスタンスcar_mcの移動や前輪のtire0_mcの回転は、処理頻度の増
加に対応して値を減らすことにしましょう。また、ここで後輪のインスタンスtire1_mcにも、前輪と同じ処理
を加えます。試しに、車の移動距離を5ピクセル、タイヤの回転角を10度としてみました（図01-021）。

Tips 01-010 ■フレームアクションと画面の描画
フレームアクションはそのフレームを表示する前に実行され、スクリプトの処理が終わってからフレームのイメージ
が画面に描画されます。
したがって、フレームアクションの中でインスタンスの座標を何度も動かしたり、その表示状態をさまざまに変更
しても、その経過がアニメーションとして表示されることはありません。すべてのスクリプトの処理が終わったとき、
最終的な座標や表示状態で、画面の描画が更新（リフレッシュ）されるからです。
また、フレームアクションは、再生ヘッドが移動してそのフレームに入ってきたときに実行されます。タイムライン
に1フレームしかない場合には、再生ヘッドの移動が起こりませんので、そのフレームアクションは最初に1度しか
処理されません。
ただし、画面の描画はフレームレートの頻度で更新されます。ですから、その描画更新時（厳密にはその直
前）に実行されるスクリプトを書けば、1フレームだけでもアニメーションの処理を行うことは可能です（後述
Chapter2「スクリプトによるアニメーション」で解説します）。

Tips 01-011 ■連続したフレームの長さを変える
連続したフレームの長さを変えるには、削除あるいは追加したいフレームの範囲を選択して右クリック（右クリッ
クの使えないMacintoshでは［control］+クリック）から［フレームを挿入］（ショートカット［F5］）したり［フレ
ームの削除］（ショートカット［Shift］+［F5］）をする以外に、マウスで操作する方法もあります。
Windowsは［Ctrl］キー、Macintoshは［command］キーを押したまま、長さを変えたいフレームの終端にマウ
スポインタを合わせると、カーソルが左右の矢印（←→）に変わります。そのまま水平にドラッグすると、連続し
たフレームの長さを伸ばしたり、縮めたりすることができます（図01-020）。ただし、1フレームしかない場合には、
この方法でフレームを伸ばすことはできません。

図01-020■［Ctrl］（Windows）または［command］（Macintosh）キーを押しながらフレームの終端をドラッグする
マウスポインタは、左右の矢印（←→）に変わる。ただし、1フレームしかない場合は、伸ばすことはできない。

0291.5 変数はメモリ

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

図01-021■車を5ピクセル水平移動してタイヤを10度回転
車のムービークリップインスタンスcar_mcを右に5ピクセル移動し、タイヤのインスタンスtire0_mcとtire1_mcを10度回転する。

1.5.2　アニメーションのパラメータを変数で指定する

実際のアニメーションコンテンツでは、［ムービープレビュー］で動きを確認しながら、スピードなどの処理
に用いられる値を調整することが少なくありません。しかし、その処理があちこちのステートメントにばらばら
に使われていると、修正箇所を漏れなく探し出すのに手間がかかります。

また、数値の間に一定の関係をもたせたい場合もあります。たとえば、今回の例（図01-021）では、前
輪と後輪は同じ回転角で動かないと不自然です。また、車の移動距離に対するタイヤの回転角は、アニメー
ションとして適切な一定の比率が存在するでしょう。

このようなときは、「変数」を使うと、記述場所をまとめることができ、また数値間の関係を定めることも
可能です。「変数」は、一種のメモリです。メモリは、電卓にもついています（図01-022）。たとえば、「2×
3＋4×5」を電卓で計算するとき、「2×3」の答えを一旦メモリに取っておく必要があります。

図01-022■電卓のメモリ
［M+］でメモリに加算、［MR］で値を呼出す。

メモリに加算 メモリから呼び出し

030 ActionScript 3.0 Professional Guide

電卓の操作は、つぎのようになります。

	 1. ［2］［×］［3］［＝］	: 6が表示される
	 2. ［M+］	 : 6がメモリされる
	 3. ［C］	 : 表示がクリアされて0になる
	 4. ［4］［×］［5］［＝］	: 20が表示される
	 5. ［＋］［MR］［＝］	 : メモリされていた6が加算されて26と表示される

この同じ計算を、ActionScript 3.0で行ってみます。電卓のメモリはひとつしかないのに対して、スクリプト
ではいくつでも使うことが可能です。その代わり、変数には名前をつけなければなりません。名前は、もちろ
ん「識別子」（Word 01-001）で設定します。

変数名は、varというキーワードを使って定義（宣言）します。その際、変数にメモリするデータの種類（デ
ータ型）も指定します。たとえば、数値の場合には、Numberというのがその指定になります。そして、変数
に値をメモリするには、プロパティに値を設定する場合と同じく、代入を行います。

変数を定義して、値を代入するときのスクリプトの構文は、つぎのようになります。

 var 変数名:データ型;

 変数名 = 値;

この2行のステートメントは、1行で記述することも可能です。

 var 変数名:データ型 = 値;

Word 01-004 ■データ型
プログラムが扱うデータの形式のことを「データ型」と呼びます。データ型によって、そのデータに対して行うこ
とのできる処理が決まります。
変数にデータ型を指定すると、そのデータ型以外のデータを代入しようとしたり、そのデータに対して許されない
処理を行おうとすると、エラーが発生します。それにより、プログラムで誤って不正な処理を書いてしまうことが
防げます。
ActionScript 3.0では変数を定義するとき、データ型を指定しないことも可能です。ただし、データ型を指定し
なければ、そのデータのチェックは行われず、誤った処理に対するエラーも発生しなくなります。データ型を指定
することにより、プログラムのミスが発見しやすくなり、変数の中身が明らかになってプログラム自体も見やすく
なります。また、データ型に応じた処理の最適化もはかられます。

AS1&2 Note 01-004 ■ ActionScript 2.0 のデータ型指定
データ型を指定して変数を定義することは、ActionScript 2.0でも可能です（1.0では型指定はできません）。た
だし、ActionScript 2.0ではデータ型をSWFの書出し（コンパイル）時にしかチェックしないのに対して、3.0で
は実行（ランタイム）時にもチェックが行われます。

0311.5 変数はメモリ

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

変数に値が代入されれば、その変数名を値の代わりに使って、スクリプトを記述することができます。たと
えば、「変数名+1」という式は、変数に入っている値（数値が代入されていると期待されます）を取出して、
それに1を加算する処理になります。

さて、電卓と同じ手順で「2×3＋4×5」を計算するフレームアクションは、つぎのとおりです。変数はふ
たつ用意しました。「2×3」の結果を変数nに、最終的な答えを変数nAnswerに代入しています（スクリプト
01-004）。なお、trace()関数は、［ムービープレビュー］のとき［出力］パネルを開いて、括弧()内に指定し
た変数などの値を表示します（図01-023）。

 trace（出力したい変数・式）;

図01-023■変数を使ったフレームアクションと［出力］パネルの表示
変数nAnswerに代入された計算結果を［出力］パネルに表示

スクリプト01-004 ■変数を使って計算するフレームアクション
var nAnswer:Number;

var n:Number = 2*3;

nAnswer = 4*5+n;

trace(nAnswer);

スクリプト01-004の処理内容は、つぎのとおりです。

［1］�第1ステートメントは、変数nAnswerをNumber（数値）型で宣言しています。ここではまだ値を設定せず、
後のステートメント（［3］）で最終的な計算結果を代入します。

Word 01-005 ■関数
「関数」は、狭い意味では、指定された値をもとに予め決められた処理を行い、その結果を示すプログラミング
上のひとつにまとめられた命令のことを指します。Microsoft Excelの関数は、その典型です。
関数をスクリプトから実行することは、関数を「呼出す」と表現することもあります。関数の括弧()内に値を指定
することは値を「渡す」といい、渡される値を「引数」（ひきすう）あるいは「パラメータ」と呼びます。関数が処
理結果の値を示すことは値を「返す」と表現し、返される値は「戻り値」と称されます。なお、クラスに定義され
た関数を「メソッド」と呼びます（「クラス」や「メソッド」については、また改めて解説します）。
広い意味では、関数にはつねに値を渡す必要はなく、関数が値を返すことも必須ではありません。つまり、予め
定められた一連の処理を行う命令群の定義が、「関数」だといえます。ActionScriptは、この意味の関数（メソッド）
とプロパティで構成されています。

032 ActionScript 3.0 Professional Guide

［2］�第2ステートメントは、変数nをやはりNumber型で宣言し、電卓の場合と同じく、途中経過の式「2
×3」の値を代入します。なお、掛け算の「×」には*（アスタリスク）、割り算の「÷」には/（スラッ
シュ）を演算子として用います。

［3］�第3ステートメントは、変数nAnswerに最終的な計算結果を代入します。代入の右辺は、「4×5」に
変数nから取出した値（［2］で代入された数値6）を加算して、式4*5+nとしています。

［4］第4ステートメントは、trace()関数を使って、変数nAnswerの値を［出力］パネルに表示します。

それでは、変数の使い方がわかったところで、車のアニメーションの例（図01-020）に戻って、スクリプト
を書いてみましょう（図01-024）。車のインスタンスcar_mcの水平移動ピクセル数とタイヤのインスタンス
tire0_mcとtire1_mcの回転角の比率は1:2とします。また、前輪と後輪は、同じ速度で回転させます。取り
あえず、フレームアクションの実行1回ごとのcar_mcの水平移動距離は、5ピクセルで設定してみます（スク
リプト01-005）。

図01-024■変数を使って計算するフレームアクション
冒頭に変数nSpeedを宣言して、アニメーションの処理に利用。

スクリプト01-005■変数を使ったフレームアクションに修正
var nSpeed:Number = 5;

car_mc.x += nSpeed;

car_mc.tire0_mc.rotation += nSpeed*2;

car_mc.tire1_mc.rotation += nSpeed*2;

［1］�第1ステートメントは、変数nSpeedをNumber型で宣言し、同時に水平移動距離として用いる数値5
を代入しています。

［2］�第2ステートメントでは、［1］で設定した変数nSpeedの値を、ムービークリップインスタンスcar_mcの
xプロパティに加算しています。すると、車のインスタンスcar_mcの水平座標は、右に5ピクセル移動し
ます。

［3］�第3ステートメントは、ムービークリップインスタンスcar_mc内に配置されたtire0_mcのrotationプロ
パティに、変数nSpeedの2倍の値を加算しています。したがって、前輪のインスタンスtire0_mcは、
10度回転します。

［4］�第4ステートメントはムービークリップインスタンスcar_mc内のインスタンスtire1_mcに対して、［3］
と同じ処理を加えています。ですから、後輪も前輪と同じ角度回転します。

このように前掲スクリプト01-005では、［1］で設定した変数nSpeedの値を使って、［2］の車の移動と［3］
［4］のタイヤの回転が処理されています。つまり、冒頭の［1］の変数の値を変えるだけで、その数値の大き
さにしたがって車の移動距離とタイヤの回転角が変わり、かつ移動距離と回転角との間にはつねに1:2の比
率が保たれます。

33Column 01　ECMAとECMAScript

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

Column 01　ECMAとECMAScript

ActionScriptは、Flash 5から導入されたオブジェクト指向プログラミング（スクリプト）言語です。
ActionScriptは、ECMA-262仕様に準拠します。ECMA-262は、JavaScriptの国際標準とされて
います。したがって、基 本的な文法は、JavaScriptと同一です。実際、ArrayやDate、Math、
Objectなど、JavaScriptとまったく同じクラス（オブジェクト）も、数多く実装されています。
ECMA-262に準拠したスクリプトは、とくに欧米ではECMAScript（エクマスクリプト）と呼ばれま
す。

JavaScriptは、Netscape Communications社（1998年に現 AOL Time Warner社により買収）
とSun Microsystems社が共同開発したスクリプト言語です。それに対抗したMicrosoft社が自社
技術を追加・拡張して、JScriptを開発しました。NetscapeとMicrosoftの仕様は細部で異なってい
たため、両社も参加して、ECMAがECMAScriptとして標準化しました。

こうした経緯ですので、JavaScriptもJScpritも、厳密にはECMA-262と一致していない部分が
あります。これはActionScriptでも同様で、ECMA-262に完全に準拠している訳ではありません。

Flash MX 2004からは、ActionScript 2.0が実装されました。Flash MXまでのActionScriptは、
バージョンが1.0ということになります。Flash Player 9以降も、ActionScript 2.0および1.0はサ
ポートされます。ActionScript 2.0の仕様も、やはりECMA-262によって定められています。ただし、
ActionScript 1.0がECMA-262第3版に準拠するのに対して、ActionScript 2.0は第4版にもとづ
きます。

Word 01-006 ■ ECMA
「ECMA」は、1961年に「European Computer Manufacturer Association」として、ヨーロッパのコ
ンピュータメーカーを中心に設立された組織です。日本語では、ヨーロッパ（欧州）電子計算機工業会
と訳されます。1994年に、名称を「Ecma International」と改めました。おもに、情報通信技術に関
する標準を策定しています。現在では、世界各地に会員企業を持つ国際団体となっています。2003年
11月17日に、Macromedia社（2005年12月Adobe Systems社により買収）も正式に参加しました。

Word 01-007 ■ ECMA-262 第 3 版と ECMAScript 4
ECMA-262第3版 は、「Standard Ecma-262 ECMAScript Language Specification 3rd edition」

（1999年12月）という文書により規定されました。前述のとおり、JavaScriptやJScriptが、この標
準に準拠しています。
これに対して第4版は、「ECMAScript 4 Netscape Proposal」という提案書からスタートした仕様です。
ECMAScript 4に準拠する言語としては、ActionScript 3.0と2.0のほかJavaScript 2.0とJScript.
NETが挙げられます。
その後若干の曲折を経て、現在ではAdobeとMozillaが共同開発で、ECMAScript 4の策定を進めて
います。そして、ECMAScript.org(<http://www.ecmascript.org/>)には、言語の概要として「Proposed
ECMAScript 4th Edition - Language Overview」が公開されました。

34 ActionScript 3.0 Professional Guide

ECMAScript 4に則るActionScript 2.0は、データ型の指定とクラスをベースとしたプログラミン
グスタイルに大きな特徴があります。ActionScript 3.0も、同じくECMAScript 4に準拠します。し
たがって、ActionScript 3.0の基本的な文法や構文は、2.0と変わりません。

ただし、ActionScript 3.0ではクラスの言語体系が整備され、プロパティやメソッドなどの細かな
仕様に変更が加えられています。そのため、ActionScript 2.0で記述したスクリプトは、そのままで
は3.0で動作しない場合が多いでしょう。

